Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Int Wound J ; 21(3): e14811, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477866

RESUMO

To investigate the effectiveness of antimicrobial agents against wound infections, experiments using either 2D cultures with planktonic microorganisms or animal infection models are frequently carried out. However, the transferability of the results to human skin is limited by the lack of complexity of the 2D models or by the poor translation of the results from animal models. Hence, there is a need for wound infection models capable of assessing antimicrobial agents. In this study, an easily standardized wound infection model was established. This model consists of a mechanically wounded human skin model on a collagen matrix infected with various clinically relevant bacteria. Infection of the model led to recognition of the pathogens and induction of an inflammatory response. The untreated infection spread over time, causing significant tissue damage. By applying an antimicrobial-releasing wound dressing, the bacterial load could be reduced and the success of the treatment could be further measured by a decrease in the inflammatory reaction. In conclusion, this wound infection model can be used to evaluate new antimicrobial therapeutics as well as to study host-pathogen interactions.


Assuntos
Anti-Infecciosos , Infecção dos Ferimentos , Animais , Humanos , Carga Bacteriana , Bandagens , Interações Hospedeiro-Patógeno
2.
Photodermatol Photoimmunol Photomed ; 40(1): e12926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957888

RESUMO

BACKGROUND: Light therapy is widely used in medicine. Specifically, photobiomodulation has been shown to exert beneficial effects in wound healing disorders, which present a major challenge in health care. The study's aim was providing information on the effect of a novel, red-laser-based wound therapy device (WTD) on keratinocytes and fibroblasts during wound healing under optimal and non-optimal conditions. METHODS: The scratch wound assay was employed as a wound healing model for mechanical damage with readjustment of specific cell milieus, explicitly chronic TH1 inflammation and TH2-dominant conditions. Furthermore, gene expression analysis of pro-inflammatory cytokines (IL1A, IL6, CXCL8), growth factors (TGFB1, PDGFC), transcription factors (NFKB1, TP53) and heat shock proteins (HSP90AA1, HSPA1A, HSPD1) as well as desmogleins (DSG1, DSG3) in keratinocytes and collagen (COL1A1, COL3A1) in fibroblasts was performed after WTD treatment. RESULTS: It was shown that WTD treatment is biocompatible and supports scratch wound closure under non-optimal conditions. A distinct enhancement of desmoglein and collagen gene expression as well as induction of early growth factor gene expression was observed under chronic inflammatory conditions. Moreover, WTD increased HSPD1 transcript levels in keratinocytes and augmented collagen expression in fibroblasts during wound healing under TH2 conditions. WTD treatment also alleviated the inflammatory response in keratinocytes and induced early growth factor gene expression in fibroblasts under physiological conditions. CONCLUSION: Positive effects described for wound treatment with WTD could be replicated in vitro and seem to be to be conferred by a direct influence on cellular processes taking place in keratinocytes and fibroblasts during wound healing.


Assuntos
Queratinócitos , Cicatrização , Humanos , Proliferação de Células , Movimento Celular , Queratinócitos/fisiologia , Colágeno , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular , Lasers , Fibroblastos/fisiologia
3.
Inflammation ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150167

RESUMO

The mouse model of 2,4-dinitrochlorbenzene (DNCB)-induced human-like atopic dermatitis (hlAD) has been widely used to test novel treatment strategies and compounds. However, the study designs and methods are highly diverse, presenting different hlAD disease patterns that occur after sensitization and repeated challenge with DNCB on dorsal skin. In addition, there is a lack of information about the progression of the disease during the experiment and the achieved pheno- and endotypes, especially at the timepoint when therapeutic treatment is initiated. We here examine hlAD in a DNCB-induced BALB/cJRj model at different timepoints: (i) before starting treatment with dexamethasone, representing a standard drug control (day 12) and (ii) at the end of the experiment (day 22). Both timepoints display typical AD-associated characteristics: skin thickening, spongiosis, hyper- and parakeratosis, altered cytokine and gene expression, increased lipid mediator formation, barrier protein and antimicrobial peptide abnormalities, as well as lymphoid organ hypertrophy. Increased mast cell infiltration into the skin and elevated immunoglobulin E plasma concentrations indicate a type I allergy response. The DNCB-treated skin showed an extrinsic moderate sub-acute hlAD lesion at day 12 and an extrinsic mild sub-acute to chronic pheno- and endotype at day 22 with a dominating Th2 response. A dependency of the filaggrin formation and expression in correlation to the disease severity in the DNCB-treated skin was found. In conclusion, our study reveals a detailed classification of a hlAD at two timepoints with different inflammatory skin conditions and pheno- and endotypes, thereby providing a better understanding of the DNCB-induced hlAD model in BALB/cJRj mice.

4.
J Fungi (Basel) ; 9(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888261

RESUMO

Trichophyton quinckeanum, the causative agent of mouse favus, has been responsible for several infections of animal owners in recent years and showed an infection peak around 2020 in Jena, Thuringia. The isolated T. quinckeanum strains from Thuringia differ in some positions of the ITS region compared to strains from the IHEM collection as well as to Trichophyton schoenleinii. All T. quinckeanum strains of the new genotype show up to a 100-fold increased itraconazole resistance as measured by microplate laser nephelometry (MLN) assays. Analysis of genes involved in Trichophyton indotineae azole resistance, such as Erg1, which encodes squalene epoxidase, and Erg11B, one of two copies of the sterol 14-α demethylase gene, show a 100% identity between the two T. quinckeanum genotypes. In contrast, Erg11A fragments differ in 15-nucleotide positions between both T. quinckeanum genotypes, resulting in the unique amino acid substitution Ala256Ser in resistant strains. The new T. quinckeanum genotype may have evolved through interspecies mating. Mating type analysis showed a nearly 100% identity of the minus type MAT1-1-1 fragment for all T. quinckeanum isolates. The closely related Trichophyton schoenleinii belongs to the plus mating type and has 100% identical fragments of Erg1 and Erg11B. Erg11A protein sequences of T. schoenleinii and T. quinckeanum showed increased diversity.

5.
Gels ; 9(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754421

RESUMO

Growing environmental concerns drive efforts to reduce packaging waste by adopting biodegradable polymers, coatings, and films. However, biodegradable materials used in packaging face challenges related to barrier properties, mechanical strength, and processing compatibility. A composite gel was developed using biodegradable compounds (prolamin, d-mannose, citric acid), as a coating to increase the oxygen barrier of food packaging materials. To improve gel stability and mechanical properties, the gels were physically cross-linked with particles synthesized from tetraethyl orthosilicate and tetramethyl orthosilicate precursors. Additionally, biocompatibility assessments were performed on human keratinocytes and fibroblasts, demonstrating the safety of the gels for consumer contact. The gel properties were characterized, including molecular structure, morphology, and topography. Biocompatibility of the gels was assessed using bioluminescent ATP assay to detect cell viability, lactate dehydrogenase assay to determine cell cytotoxicity, and a leukocyte stimulation test to detect inflammatory potential. A composite gel with strong oxygen barrier properties in low-humidity environments was prepared. Increasing the silane precursor to 50 wt% during gel preparation slowed degradation in water. The addition of citric acid decreased gel solubility. However, higher precursor amounts increased surface roughness, making the gel more brittle yet mechanically resistant. The increase of precursor in the gel also increased gel viscosity. Importantly, the gels showed no cytotoxicity on human keratinocytes or fibroblasts and had no inflammatory effects on leukocytes. This composite gel holds promise for oxygen barrier food packaging and is safe for consumer contact. Further research should focus on optimizing the stability of the oxygen barrier in humid environments and investigate the potential sensitizing effects of biodegradable materials on consumers.

6.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569701

RESUMO

In dermatological research, 2,4-dinitrochlorbenzene (DNCB)-induced atopic dermatitis (AD) is a standard model as it displays many disease-associated characteristics of human AD. However, the reproducibility of the model is challenging due to the lack of information regarding the methodology and the description of the phenotype and endotype of the mimicked disease. In this study, a DNCB-induced mouse model was established with a detailed procedure description and classification of the AD human-like skin type. The disease was induced with 1% DNCB in the sensitization phase and repeated applications of 0.3% and 0.5% DNCB in the challenging phase which led to a mild phenotype of AD eczema. Pathophysiological changes of the dorsal skin were measured: thickening of the epidermis and dermis, altered skin barrier proteins, increased TH1 and TH2 cytokine expression, a shift in polyunsaturated fatty acids, increased pro-resolving and inflammatory mediator formation, and dysregulated inflammation-associated gene expression. A link to type I allergy reactions was evaluated by increased mast cell infiltration into the skin accompanied by elevated IgE and histamine levels in plasma. As expected for mild AD, no systemic inflammation was observed. In conclusion, this experimental setup demonstrates many features of a mild human-like extrinsic AD in murine skin.


Assuntos
Dermatite Atópica , Humanos , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Reprodutibilidade dos Testes , Imunoglobulina E/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
7.
Antibiotics (Basel) ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37237836

RESUMO

Cutaneous candidiasis is characterized by an overgrowth of Candida leading to skin inflammation and infection. Similar to bacteria, Candida can develop tolerance to common antifungal drugs. Cold atmospheric plasma (CAP), with its proven antimicrobial properties, offers a promising alternative to the prevailing methods. Because of plasma heterogeneity each new device must be tested individually for its effectiveness. Antimicrobial activity is usually studied using planktonic microorganisms or animal models, making it difficult to extrapolate the results to the human system. Therefore, a 3D skin model of cutaneous candidiasis for the antimicrobial testing of CAP was established. First, the reaction of the 3D-skin model to Candida infection was examined using various histological and molecular-biological methods. Infection with C. albicans resulted in increased expression and secretion of pro-inflammatory cytokines and augmented expression of antimicrobial peptides. Within 48 h, hyphal growth spread throughout the model and caused tissue damage. Second, the CAP treatment was employed. It was shown that CAP significantly reduced the spread of the yeast in the infected skin models as well as decreased the expression and secretion of the infection markers. The plasma device exhibited a high antifungal activity by completely inhibiting hyphal growth and reducing inflammation at the highest treatment duration.

8.
Sci Rep ; 13(1): 1807, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720910

RESUMO

Skin homeostasis is a complex regulated process relying on the crosstalk of keratinocytes, fibroblasts and immune cells. Imbalances of T-cell subsets and the cytokine environment can lead to inflammatory skin diseases such as psoriasis (Ps) and atopic dermatitis (AD). Modern tissue engineering provides several in vitro models mimicking Ps and AD phenotypes. However, these models are either limited in their pathological features, life span, sample availability, reproducibility, controlled handling or simplicity. Some models further lack intensive characterization as they solely focus on differentiation and proliferation aspects. This study introduces a self-assembly model in which the pathological T-cell-signalling of Ps and AD was simulated by subcutaneous Th1 and Th2 cytokine stimulation. The self-established dermal fibroblast-derived matrices of these models were hypothesized to be beneficial for proximal cytokine signalling on epidermal keratinocytes. Comprehensive histological and mRNA analyses of the diseased skin models showed a weakened barrier, distinct differentiation defects, reduced cellular adhesion, inflammation and parakeratosis formation. A keratin shift of declining physiological cytokeratin-10 (CK10) towards increasing inflammatory CK16 was observed upon Th1 or Th2 stimulation. Antimicrobial peptides (AMPs) were upregulated in Ps and downregulated in AD models. The AD biomarker genes CA2, NELL2 and CCL26 were further induced in AD. While Ps samples featured basal hyperproliferation, cells in AD models displayed apoptotic signs. In accordance, these well-controllable three-dimensional in vitro models exhibited Ps and AD-like phenotypes with a high potential for disease research and therapeutic drug testing.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Reprodutibilidade dos Testes , Psoríase/genética , Fibroblastos , Fenótipo
9.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615633

RESUMO

Atopic dermatitis is a T-cell mediated inflammatory skin disease with detected elevated levels of histamine in skin or plasma. In this study, the effects of histamine in a TH2 cytokine environment on human keratinocytes and three-dimensional skin models were investigated. These models were used to explore the anti-inflammatory properties of the α-tocopherol-derived long-chain metabolite α-13'-carboxychromanol (α-13'-COOH). Histamine and TH2 cytokine-induced proliferation of keratinocytes was studied using a scratch assay. The inflammatory marker interleukin-8 was significantly increased in healthy and TH2 cytokine-stimulated keratinocytes and skin models after histamine treatment. The incubation of full-thickness skin models with TH2 cytokines and histamine resulted in morphological changes in the epidermal layer, interpreted as hyperkeratosis. α-13'-COOH significantly decreased interleukin-8 in these disease-associated skin models. Histological staining of filaggrin showed skin-strengthening effects following α-13'-COOH treatment, without changes in mRNA expression. Cytokeratin 10 mRNA expression tended to be increased in response to α-13'-COOH. Anti-allergic properties of α-13'-COOH were studied by pre-incubation of human leukocytes with α-13'-COOH. This resulted in reduced sulfido-leukotriene synthesis. The hyperproliferation effect of histamine in atopic dermatitis skin models may be of further interest to the study of disease-associated morphological changes. Moreover, α-13'-COOH is a promising natural compound for the treatment of inflammatory skin diseases.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/metabolismo , Histamina/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , alfa-Tocoferol/farmacologia , alfa-Tocoferol/metabolismo , Tocoferóis/farmacologia , Pele , Queratinócitos , Citocinas/metabolismo , RNA Mensageiro/metabolismo
10.
J Drugs Dermatol ; 21(11): 1173-1180, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342736

RESUMO

BACKGROUND: Gentle skin cleansing and exfoliation and the use of moisturizers as an adjunct to medical treatment should be part of the prevention, treatment, and maintenance of cutaneous conditions such as acne vulgaris (acne) psoriasis, and xerosis. A monofilament fiber debriding technology (MFDT) is used for effective, safe, and rapid skin cleansing and exfoliation and debris, slough, and biofilm removal. The current review addresses the clinical experience using MFDT for various cutaneous conditions that require cleansing or exfoliation or both and how to combine it with medical treatment. METHODS: A literature review explored clinical insights into the role of skin cleansing and exfoliation for patients with various dermatological conditions. The searches yielded 29 publications, 7 guidelines/algorithms, 13 reviews, 8 clinical studies, and one in vitro study. RESULTS: Mechanical cleansing using a device can be helpful; however, avoid injury of the skin as it may result in thickening of the epidermis leading to hyperkeratosis and disruption of the skin barrier. Clinical experience with MFDT for acne, psoriasis, atopic dermatitis, and xerosis is discussed. Additionally, MFDT was used to exfoliate hyperkeratosis, actinic keratosis, and traumatic skin tattoos. CONCLUSIONS: Mechanical cleansing using MFDT was shown to be safe and beneficial for skin cleansing and exfoliation of various cutaneous conditions; however, only anecdotal evidence or small studies are available to support its use for these conditions. J Drugs Dermatol. 2022;21(11):1173-1180. doi:10.36849/JDD.6261.


Assuntos
Acne Vulgar , Dermatite Atópica , Psoríase , Humanos , Acne Vulgar/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Epiderme , Tecnologia , Psoríase/diagnóstico , Psoríase/tratamento farmacológico
11.
Microorganisms ; 10(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296303

RESUMO

The treatment of chronic wounds presents a major challenge in medical care. In particular, the effective treatment of bacterial infections that occur in the form of biofilms is of crucial importance. To develop successful antibiofilm strategies for chronic wound treatment, biofilm models are needed that resemble the in vivo situation, are easy to handle, standardizable, and where results are readily transferable to the clinical situation. We established two 3D biofilm models to distinguish the effectiveness of wound dressings on important microorganisms present in chronic wounds. The first 3D biofilm model contains Staphylococcus aureus, Escherichia coli, and Acinetobacter baumannii, while the second is based on Pseudomonas aeruginosa. Bacteria are cultivated in a nutrient-rich agar/gelatin mix, into which air bubbles are incorporated. This results in a mature biofilm growing in clusters similar to its organization in chronic wounds. The models are convenient to use, have low variability and are easy to establish in the laboratory. Treatment with polihexanide and silver-containing wound dressings showed that the models are very well suited for antimicrobial testing and that they can detect differences in the efficacy of antimicrobial substances. Therefore, these models present valuable tools in the development of effective antibiofilm strategies in chronic wounds.

12.
Int J Pharm ; 628: 122267, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36209980

RESUMO

Bacterial nanocellulose has been widely investigated for wound healing applications, mainly due to its moisturizing capabilities and biocompatibility. Even though the topical therapy of nail diseases could benefit from these properties, this application has not yet been investigated. Therefore, actively hydrating nail patches based on bacterial nanocellulose were developed to improve the delivery of ciclopirox olamine and Boswellia serrata extract through the nail plate. The nanocellulose matrix was used to enable the application of hydration enhancing solutions based on glycerol and urea as a mechanically stable patch. While the favorable mechanical characteristics of the material remained unchanged, an increase of the incorporated glycerol concentration enhanced the transparency and wetting capacity of the patches. A biphasic drug release from the patches could be observed for drug and extract with a faster release for the hydrophilic ciclopirox olamine. High glycerol concentrations correlated with increased cumulative release and permeation through keratin films for drug and extract, demonstrating the hydration driven permeation enhancement. Patches containing ciclopirox olamine showed strong antimycotic effects against relevant pathogens for onychomycosis. The present finding proposed the combination of bacterial nanocellulose with glycerol, urea and different drug as a promising platform for the local treatment of nail diseases.


Assuntos
Doenças da Unha , Onicomicose , Humanos , Ciclopirox/farmacologia , Ciclopirox/uso terapêutico , Antifúngicos , Glicerol , Piridonas , Onicomicose/tratamento farmacológico , Unhas , Doenças da Unha/tratamento farmacológico , Administração Tópica , Excipientes/farmacologia , Ureia , Extratos Vegetais/farmacologia
13.
Antibiotics (Basel) ; 11(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140038

RESUMO

The interest of the food packaging industry in biodegradable, recyclable, and functional materials has steadily increased in recent years. The use of hydrogels in the food sector holds great potential for use in packaging systems or as carriers for bioactive substances. The synthesis of an oxygen barrier coating of prolaminic silica material and antimicrobial functionalization with fumaric acid for packaging materials described here is an elegant way to meet these requirements. The developed material achieved a significant antimicrobial activity against Escherichia coli and Staphylococcus aureus, two common clinical pathogens. Another pre-requisite of such materials is a high biocompatibility, which can be assessed using human cell models, to help ensure consumer safety. The biocompatibility was determined by luminescence adenosine triphosphate and photometric lactate dehydrogenase assays. No cytotoxic effects on human keratinocytes in vitro were found for the test materials.

14.
J Wound Care ; 31(7): 560-570, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35797260

RESUMO

OBJECTIVE: Wound dressings that inactivate or sequestrate microorganisms, such as those with a hydrophobic, bacteria-binding dialkylcarbamoyl chloride (DACC) surface, can reduce the risk of clinical infections. This 'passive' bioburden control, avoiding bacterial cell wall disruption with associated release of bacterial endotoxins aggravating inflammation, is advantageous in hard-to-heal wounds. Hence, the full scope of DACC dressings, including the potential impact of higher inoculum densities, increased protein load and different pH on antibacterial activity, needs to be evaluated. METHOD: The Japanese Industrial Standard (JIS) L 1902 challenge test was used to evaluate the antimicrobial activity of the DACC-coated dressing against several World Health Organization (WHO)-prioritised wound pathogens (e.g., meticillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, microorganisms with extended-spectrum beta-lactamases and Acinetobacter baumannii), the effect of repeated bacterial challenge in an adverse wound environment, and antimicrobial performance at wound-related pH. RESULTS: High antibacterial activity of the DACC-coated dressing against the WHO-prioritised bacteria strains by its irreversible binding and inhibition of growth of bound bacteria was confirmed using JIS L 1902. At increased inoculation densities, compared to standard conditions, the DACC-coated dressing still achieved strong-to-significant antibacterial effects. Augmenting the media protein content also affected antibacterial performance; a 0.5-1 log reduction in antibacterial activity was observed upon addition of 10% fetal calf serum. The pH did not influence antibacterial performance. The DACC-coated dressing also sustained antibacterial activity over subsequent reinfection steps. CONCLUSION: It can be assumed that the DACC-coated dressing exerts beneficial effects in controlling the wound bioburden, reducing the overall demand placed on antibiotics, without using antimicrobial substances.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Bactérias , Bandagens/microbiologia , Cloretos , Humanos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/terapia
15.
Eur J Pharm Sci ; 172: 106152, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231603

RESUMO

Ammonium bituminosulfonate preparations have been used for various dermatological diseases since the 19th century. The dark preparation is known as the so-called "drawing salve" (Ichtholan®) for the treatment of abscesses and furuncles. The underlying activity is in part the loosening of the skin, which facilitates pus extraction and treatment of deep inflammations. For this investigation 3D skin models were incubated with ointments containing different ammonium bituminosulfonate concentrations. Histological and immunohistochemical staining as well as penetration investigation were carried out. The effect of dark ammonium bituminosulfonate ointments on skin loosening was investigated to reveal the underlying mechanism. The skin loosening effect could be proved by HE-staining for ammonium bituminosulfonate treated skin models. This effect was concentration dependent. While treatment with ammonium bituminosulfonate ointment had no influence on keratin expression, high concentrated ointments led to decreased filaggrin and laminin expression. Treatment of skin models with ABS ointments led to an increased skin permeability, which was concentration dependent. For the first time the skin loosening effect of ammonium bituminosulfonate ointment has been demonstrated on 3D skin models. This effect is at least in part caused by the interaction of the substance with structure dependent proteins of the epidermis.


Assuntos
Compostos de Amônio Quaternário , Pele , Pomadas , Compostos de Amônio Quaternário/farmacologia , Pele/metabolismo , Absorção Cutânea
16.
J Mater Sci Mater Med ; 33(2): 22, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133505

RESUMO

Wound dressings that exert an antimicrobial effect in order to prevent and treat wound infections can be harmful to the wound healing process. Dressings with hydrophobic coatings, however, have been suggested to both reduce the microbial load and promote the healing process. Therefore, the potential effects of a dialkylcarbamoyl chloride (DACC)-coated dressing on fibroblasts and keratinocytes in wound healing were studied using mechanical scratch wounding of confluent cell layers as an in vitro model. Additionally, gene expression analysis by qRT-PCR was used to elucidate the longitudinal effects of the DACC-coated dressing on cell responses, specifically inflammation, growth factor induction and collagen synthesis. DACC promoted cell viability, did not stick to the cell layers, and supported normal wound healing progression in vitro. In contrast, cells became attached to the uncoated reference material, which inhibited scratch closure. Moreover, DACC slightly induced KGF, VEGF, and GM-CSF expression in HaCaT cells and NHDF. Physiological COL1A1 and COL3A1 gene expression by NHDF was observed under DACC treatment with no observable effect on S100A7 and RNASE7 levels in HaCaT cells. Overall, the DACC coating was found to be safe and may positively influence the wound healing outcome. Graphical abstract.


Assuntos
Bandagens , Cloretos , Cloretos/farmacologia , Fibroblastos , Queratinócitos , Cicatrização
17.
Microbiologyopen ; 11(1): e1257, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212482

RESUMO

Dermal fungal infections seem to have increased over recent years. There is further a shift from anthropophilic dermatophytes to a growing prevalence of zoophilic species and the emergence of resistant strains. New antifungals are needed to combat these fungi and their resting spores. This study aimed to investigate the sporicidal effects of sertaconazole nitrate using microplate laser nephelometry against the microconidia of Trichophyton, chlamydospores of Epidermophyton, blastospores of Candida, and conidia of the mold Scopulariopsis brevicaulis. The results obtained were compared with those from ciclopirox olamine and terbinafine. The sporicidal activity was further determined using infected three-dimensional full skin models to determine the antifungal effects in the presence of human cells. Sertaconazole nitrate inhibited the growth of dermatophytes, molds, and yeasts. Ciclopirox olamine also had good antifungal activity, although higher concentrations were needed compared to sertaconazole nitrate. Terbinafine was highly effective against most dermatophytes, but higher concentrations were required to kill the resistant strain Trichophyton indotineae. Sertaconazole nitrate, ciclopirox olamine, and terbinafine had no negative effects on full skin models. Sertaconazole nitrate reduced the growth of fungal and yeast spores over 72 h. Ciclopirox olamine and terbinafine also inhibited the growth of dermatophytes and molds but had significantly lower effects on the yeast. Sertaconazole nitrate might have advantages over the commonly used antifungals ciclopirox olamine and terbinafine in combating resting spores, which persist in the tissues, and thus in the therapy of recurring dermatomycoses.


Assuntos
Antifúngicos/farmacologia , Dermatomicoses/tratamento farmacológico , Esporos Fúngicos/efeitos dos fármacos , Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Sobrevivência Celular , Ciclopirox/farmacologia , Ciclopirox/uso terapêutico , Dermatomicoses/microbiologia , Epidermophyton/efeitos dos fármacos , Fibroblastos , Humanos , Imageamento Tridimensional , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Concentração Inibidora 50 , Queratinócitos , Lasers , Testes de Sensibilidade Microbiana , Nefelometria e Turbidimetria/métodos , Scopulariopsis/efeitos dos fármacos , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Trichophyton/efeitos dos fármacos
18.
Mycoses ; 65(1): 97-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34767653

RESUMO

BACKGROUND: The T indotineae population shows a high amount of terbinafine resistant isolates based on different point mutations of squalene epoxidase erg1 (ergosterol) gene. A significant proportion of these isolates also show azole resistance. OBJECTIVES: Elucidation of the molecular mechanism for azole resistance, especially the identification of mutations in the sterol 14-α demethylase Erg11 genes, which encode for enzymes interacting with azoles. METHODS: Sequencing of putative Erg11 genes and analysis of phenotypic resistance pattern using a microplate-laser-nephelometry-based growth assay. RESULTS: Four different types of Erg11B mutants were detected; two double mutants with Ala230Thr/Asp441Gly, respectively, Ala230/Tyr444His and single mutants with Gly443Glu, Tyr444Cys and Tyr444His. All isolates featured the wild type genotype of Erg11A. All strains demonstrated different combinations of Erg1 and Erg11 genotypes. CONCLUSION: Resistance against terbinafine and azoles developed several times independently within the T indotineae population. The challenge for fungal treatment is, therefore, that species identification is not enough for prediction of therapeutic efficacy of antifungals. In the future, it will also become important to analyse genes involved in resistance mechanisms.


Assuntos
Farmacorresistência Fúngica , Mutação Puntual , Esqualeno Mono-Oxigenase , Esterol 14-Desmetilase , Trichophyton/genética , Antifúngicos/farmacologia , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Evolução Molecular , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana , Esqualeno Mono-Oxigenase/genética , Esterol 14-Desmetilase/genética , Terbinafina/farmacologia , Trichophyton/enzimologia
19.
Biomedicines ; 9(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944618

RESUMO

It is a general goal to improve wound healing, especially of chronic wounds. As light therapy has gained increasing attention, the positive influence on healing progression of water-filtered infrared A (wIRA), a special form of thermal radiation, has been investigated and compared to the detrimental effects of UV-B irradiation on wound closure in vitro. Models of keratinocyte and fibroblast scratches help to elucidate effects on epithelial and dermal healing. This study further used the simulation of non-optimal settings such as S. aureus infection, chronic inflammation, and anti-inflammatory conditions to determine how these affect scratch wound progression and whether wIRA treatment can improve healing. Gene expression analysis for cytokines (IL1A, IL6, CXCL8), growth (TGFB1, PDGFC) and transcription factors (NFKB1, TP53), heat shock proteins (HSP90AA1, HSPA1A, HSPD1), keratinocyte desmogleins (DSG1, DSG3), and fibroblast collagen (COL1A1, COL3A1) was performed. Keratinocyte and fibroblast wound healing under non-optimal conditions was found to be distinctly reduced in vitro. wIRA treatment could counteract the inflammatory response in infected keratinocytes as well as under chronic inflammatory conditions by decreasing pro-inflammatory cytokine gene expression and improve wound healing. In contrast, in the anti-inflammatory setting, wIRA radiation could re-initiate the acute inflammatory response necessary after injury to stimulate the regenerative processes and advance scratch closure.

20.
J Mater Sci Mater Med ; 32(9): 96, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34406486

RESUMO

Formation and treatment of biofilms present a great challenge for health care and industry. About 80% of human infections are associated with biofilms including biomaterial centered infections, like infections of prosthetic heart valves, central venous catheters, or urinary catheters. Additionally, biofilms can cause food and drinking water contamination. Biofilm research focusses on application of experimental biofilm models to study initial adherence processes, to optimize physico-chemical properties of medical materials for reducing interactions between materials and bacteria, and to investigate biofilm treatment under controlled conditions. Exploring new antimicrobial strategies plays a key role in a variety of scientific disciplines, like medical material research, anti-infectious research, plant engineering, or wastewater treatment. Although a variety of biofilm models exist, there is a lack of standardization for experimental protocols, and designing experimental setups remains a challenge. In this study, a number of experimental parameters critical for material research have been tested that influence formation and stability of an experimental biofilm using the non-pathogenic model strain of Pseudomonas fluorescens. These parameters include experimental time frame, nutrient supply, inoculum concentration, static and dynamic cultivation conditions, material properties, and sample treatment during staining for visualization of the biofilm. It was shown, that all tested parameters critically influence the experimental biofilm formation process. The results obtained in this study shall support material researchers in designing experimental biofilm setups.


Assuntos
Biofilmes , Pseudomonas fluorescens/metabolismo , Antibacterianos , Anti-Infecciosos , Biomassa , Meios de Cultura , Próteses Valvulares Cardíacas , Teste de Materiais , Desenho de Prótese , Resistência ao Cisalhamento , Estresse Mecânico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...